CSCI8980: Applied Machine Learning in Computational Biology

ntroduction to Bioinformatics

Rui Kuang

Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu

Thanks to Luce Skrabanek

History of Bioinformatics

History of Bioinformatics

Thanks to Luce Skrabanek

Jacques van Helden, David Gilbert and A.C. Tan, 2003

Other Data

- SNPs
- Organism-specific databases
- Genomes

- - - - -

- Molecular pathways
- Scientific literature
- Disease information

Combinatory Algorithms

- Get multiple copies of DNA segments.
- Alignment the segments to reconstruct the sequence.
- Closing the GAP with slow
 and expensive experiments.
- Combinatory algorithms for closing the gap with minimal number of pool tests.

CSCI8980: Applied Machine Learning in Computational Biology

Inferring Gene Regulatory letwork with Bayesian Networks

Rui Kuang

Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu

Cellular Networks

- Complex functions of cells are carried out by the coordinated activity of genes and their products
- Cellular network of interactions of 1000s of genes and their products
- New high-throughput genomic data, such as microarray data, enables computational study of cellular networks genome-widely.
- DNA (genes) → mRNA → proteins
 Transcription

Gene Regulatory Networks

- Gene regulatory networks: switching on and off of genes by regulation of transcriptional machinery
- Learning problem: Model gene regulatory behavior using genome-wide data, extract hypotheses for wet lab testing
- Descriptive models, such as probabilistic graphical models, linear network models, clustering, are interpretable models to training data.
- Can check if local components of model reflect known biological mechanisms.

Gene Regulation

 Regulatory proteins (transcription factors) bind to non-coding regulatory sequence (promoter) of a gene to control rate of transcription

Gene Regulation

 Regulatory proteins (transcription factors) bind to non-coding regulatory sequence (promoter) of a gene to control rate of transcription

Genome-wide Expression Data

- Microarray (and other highthroughput) technologies measure mRNA transcript expression levels for 1000s of genes at once
- Noisy and sparse data

- Snapshot of the cellular system: transcriptome, i.e. protein expression not observed
- Difficult to infer regulatory relation between genes.

Regulatory Components in yeast

- For simple organisms like yeast (S. cerevisiae), previous studies and data sources the components needed in model:
 - Known and putative
 - transcription factors
 - □ Signaling molecules that
 - activate transcription factors
 - Known and putative binding site "motifs" in promoter regions
 - In yeast, regulatory sequence = 500 bp upstream region

Analyze Gene Expression Data

Clustering

- □ Groups genes with similar expression patterns
- The gene clusters do not reveal the regulatory structure of the genes
- Boolean Networks
 - Deterministic models of the logical interactions between genes
 - Gene is in either on state or off state
 - □ Not feasible to learn from microarray data

Bayesian Networks

- Measure expression level of each gene
- □ Gene as random variables affecting on others
- Can possibly include other random variables, such as external stimuli, environment parameters, and biological factors

Model Validation of Genetic Regulatory Networks

Using Bayesian scoring metric to choose the right network structure

```
BayesianScore(S) = \log p(S \mid D)
```

 $= \log p(S) + \log p(D|S) + c,$

where p(D|S) is the likelihood function and P(S) is a prior on the model S.

- Validated on the galactose system in S. cerevisiae
- Expression data: 52 genomes worth of Affymetrix GeneChip expression data

Hartemink et al. 2001

Hypothesis of Galactose System

Scoring Possible Structures

Binary quantization of gene expression into up/down (3 binary random variables)

Scoring Possible Structures

Binary quantization of gene expression into up/down (3 binary random variables)

