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Jacques van Helden, David Gilbert and A.C. Tan, 2003
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Other Data

m SNPs

m Organism-specific databases
m Genomes

m Molecular pathways

m Scientific literature

m Disease information
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Combinatory Algorithms
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Cellular Networks

m Complex functions of cells are carried out by
the coordinated activity of genes and their

products -
m Cellular network of interactions of &

1000s of genes and their products '______ﬁ’“
= New genomic data, . 5~ .

such as microarray data, enables
study of cellular

networks genome-widely.
m DNA (genes) = mRNA =» proteins

Transcription

Figure: Snyder and Gerstein Labs
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Gene Regulatory Networks

. . switching on
and off of genes by regulatlon of
transcriptional machinery

o : Model gene regulatory
behavior using genome-wiqle data, extract
hypotheses for wet lab testing

M , such as probabilistic
graphical models, linear network models,
clustering, are interpretable models to
training data.

m Can check if local components of model
reflect known biological mechanisms.



Gene Regulation

O bind to
non-coding of a
gene to control rate of transcription

gene

regulatory = f% |
sequence = T\ e I MmRNA
o it \ transcript

Figure: Griffiths et al. "Modern Genetic

Analysis” protein



Gene Regulation

O bind to
non-coding of a
gene to control rate of transcription

N
7 gene
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Genome-wide Expression Data
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for 1000s of B&
genes at once s
m Noisy and sparse data S
m Snapshot of the cellular system: , 1.e.
protein expression not observed
m Difficult to infer regulatory relation between genes.




Regulatory Components in yeast

m For simple organisms like (S. cerevisiae),
previous studies and data sources the components

needed in model:
, Signaling ranscription
Known and putative

Gene

that Fﬂ;;d;r;g
oll
activate transcription factors

Known and putative in
promoter regions

In yeast, regulatory sequence = 500 bp upstream
region




" J
Analyze Gene Expression Data

m Clustering
Groups genes with similar expression patterns
The gene clusters do not reveal the regulatory structure of the
genes

m Boolean Networks
Deterministic models of the logical interactions between genes
Gene is in either on state or off state
Not feasible to learn from microarray data

m Bayesian Networks
Measure expression level of each gene
Gene as random variables affecting on others

Can possibly include other random variables, such as external
stimuli, environment parameters, and biological factors
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Model Validation of Genetic
Regulatory Networks

m Using metric to choose the right
network structure

BayesianScore(S) =1og p(S | D)
=log p(S)+log p(DIS)+c,
where p(DIS)is the likelihood function and P(S)1is a prior on the model S.

m Validated on the in S.
cerevisiae

m Expression data: 52 genomes worth of Affymetrix
GeneChip expression data

Hartemink et al. 2001



Hypothesis of Galactose System
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Scoring Possible Structures

m Binary quantization of gene expression
into up/down (3 binary random variables)
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Scoring Possible Structures

m Binary quantization of gene expression
into up/down (3 binary random variables)
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